Bentuk Sederhana DAri: PerTanyaan ada di foto
Cara merasionalkan bentuk akar:
[tex]\frac{a}{ \sqrt{b} } = \frac{a}{ \sqrt{b} } \times \frac{ \sqrt{b} }{ \sqrt{b} } = \frac{a}{b} \sqrt{b} \\ \frac{a}{b + \sqrt{c} } = \frac{a}{b + \sqrt{c} } \times \frac{b - \sqrt{c} }{b - \sqrt{c} } \\ \frac{a}{ \sqrt{b} + \sqrt{c} } = \frac{a}{ \sqrt{b} + \sqrt{c} } \times \frac{ \sqrt{b} - \sqrt{c} }{\sqrt{b} - \sqrt{c}}[/tex]
[tex]\\[/tex]
[tex] \frac{3 \sqrt{5} }{ \sqrt{2} + \sqrt{6} } = \frac{3 \sqrt{5} }{ \sqrt{2} + \sqrt{6} } \times \frac{ \sqrt{2} - \sqrt{6} }{ \sqrt{2} - \sqrt{6} } \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \frac{3 \sqrt{5} ( \sqrt{2} - \sqrt{6} )}{( \sqrt{2} + \sqrt{6})( \sqrt{2} - \sqrt{6} ) } \\ \: \: \: \: = \frac{ 3 \sqrt{10} - 3 \sqrt{30} }{ ( \sqrt{2})^{2} - ( \sqrt{6} )^{2} } \\ \: \: \: \: = \frac{3( \sqrt{10} - \sqrt{30}) }{2 - 6} \\ \: \: \: \: = \frac{3( \sqrt{10} - \sqrt{30}) }{ - 4} \\ \: \: \: \: \: \: \: = - \frac{3}{4} ( \sqrt{10} - \sqrt{30} )[/tex]
Semoga membantu.
Note:
(a + b)(a - b) = a² - b²
(√a)² = a
Penjelasan dengan langkah-langkah:
Ini ya☺☺
semoga benar☺
jadiin jawaban tercerdas loh...
[answer.2.content]